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Abstract. In their recent contribution, Mazzoleni et al. (2017) investigated the integration of crowdsourced data (CSD) in

hydrological models to improve the accuracy of real-time flood forecast. They showed that assimilation of CSD improves the

overall model performance in all the considered case studies. The impact of irregular frequency of available crowdsourced

data, and that of data uncertainty, were also deeply assessed. However, it has to be remarked that, in their work, the Authors

used synthetic (i.e., not actually measured) crowdsourceddata, because actual crowdsourced data were not available at the5

moment of the study. This point, briefly mentioned by the authors, deserves further discussion. In most real-world applications,

rainfall-runoff models are calibrated using data from traditional sensors. Typically, CSD are collected at differentlocations,

where semi-distributed models are not calibrated. In a context of equifinality and of poor identifiability of model parameters,

the model internal states can hardly mimic the actual systemstates away from calibration points, thus reducing the chances of

success in assimilating real (i.e., not synthetic) CSD. Additional criteria are given that are useful for the a-priori evaluation of10

crowdsourced data for real-time flood forecasting and, hopefully, to plan apt design strategies for both model calibration and

collection of crowdsourced data.

1 Introduction

The availability of hydrometric data, collected by active citizens in the course of severe flood events, offers a new, unexpected

chance to improve real-time flood forecasts. In pioneering applications, crowdsourced data (CSD) collected in the upper part15

of a basin were assimilated into adaptive hydrologic modelsto reduce the uncertainty in forecasting flood hydrographs at

downstream sections (Mazzoleni et al., 2015). In a recent work, Mazzoleni et al. (2017) paid particular attention to theissues

of data uncertainty and irregular arrival frequency of CSD.Their results showed that assimilation of CSD improves the overall

model performance in all the case studies they considered. They also showed that the accuracy of CSD is, in general, more

important than their arrival frequency.20

However, there is a crucial aspect that has to be remarked. Intheir work, the Authors used synthetic (i.e., not actually

measured) CSD, because real streamflow CSD were not available at the moment of the study. The Authors warned about this

aspect by stating that “the developed methodology is not tested with data coming from actual social sensors. Therefore, the
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conclusions need to be confirmed using real crowdsourced observations of water level”. This point deserves further discussion,

as the use of synthetic data led them to disregard a subtle, yet significant, limitation inherent in the use of CSD in real-time

flood forecasting. The problem involves equifinality (i.e.,uncertainty in model parameters and internal states, Beven, 2006)

that characterizes hydrologic, semi-distributed (and over-parametrized) models.

After the critical work by Beven (1989), detailed investigations were carried out about the complexity a model needs to5

simulate rainfall-runoff process. Several studies indicated that the information content in a rainfall-runoff record is sufficient

to support models of only very limited complexity (Jakeman and Hornberger, 1993; Refsgaard, 1997). This implies that dis-

tributed, or semi-distributed, hydrologic models are seldom calibrated. Rather, they are commonly over-parametrized. As a

typical example, a semi-distributed rainfall-runoff model may provide accurate predictions of the outflow discharge at the

closing section and, at the same time, it can fail to correctly model the relative contribution of upstream tributaries.To limit10

problems related to over-parametrization, also the internal states of a distributed model have to be calibrated (Sebben et al.,

2012; Viero et al., 2014), and not only the outflow at the closing section.

Strictly speaking, and bearing in mind that one can get the correct answer for the wrong reason (Loague et al., 2010), a

semi-distributed model can be said calibrated only at the calibration points. This caveat has important consequences also on

data assimilation and models updating.15

In general, data assimilation techniques are used to updatemodel input, states, parameters, or outputs based on new, avail-

able observations (Refsgaard, 1997). Assimilation of CSD may improve the performance of a forecasting model inasmuch as

assimilated data contribute in updating (i.e., in correcting) the internal states of the model. It must be observed thatcrowd-

sourced data typically refers to internal states of the model, since input and output data commonly corresponds to location

provided with traditional physical sensors. For updating to be successful, available data must be substantial and accurate (as20

well debated by Mazzoleni et al., 2017), but further requirements must be met. Indeed, data assimilation is successful if the

model can correctly predict, at the same time, both the main output and the internal states of the system. At least, the model

have to describe well the real system states (i.e., must be properly calibrated) at every location in which crowdsourceddata are

collected. Accordingly, crowdsourced data must be collected in correspondence of the control points of the models (i.e., those

used to calibrate the model).25

Therefore, beside the key points identified by Mazzoleni et al. (2017), not only data, but also the model has to match specific

requirements for data assimilation to be successful. This issue is certainly relevant for the case study of the Bacchiglione River,

for the reason reported in the following.

2 Specific comments

In this Section, the focus is on the fourth case study presented in Mazzoleni et al. (2017), in which synthetic (i.e., not actually30

recorded) crowdsourced data (CSD) were used to improve the performance of a semi-distributed hydrological model of the

Bacchiglione catchment closed at Ponte degli Angeli, Vicenza (Italy).
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Figure 1. The catchment of the Bacchiglione River closed at Ponte degli Angeli, Vicenza (Italy).

2.1 The Bacchiglione catchment closed at Ponte degli Angeli(Vicenza)

The catchment of the upper Bacchiglione River, closed at Ponte degli Angeli in the historical centre of Vicenza (Fig. 1),is

located in the north of the Veneto Region, a plain that is fringed by the Alpine barrier at a distance of less than 100 km to the

north of the Adriatic Sea (Barbi et al., 2012).

With regard to the precipitation climatology, the southernpart of this plain is the drier, with approximately 700–1000mm of5

mean annual rainfall, whereas more than 2000 mm are measuredclose to the pre-alpine chain. Obviously, these differences are

mainly related to the mountain barrier and its interaction with southerly warm and humid currents coming from the Mediter-

ranean Sea (Smith, 1979). Indeed, the topography of the region rises from the southern plain at about 30 m above sea level

(a.s.l.) to about 1500–2200 m a.s.l. in the first orographic barrier, the pre-alpine chain, and then further to the north to the
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Figure 2. Hourly rainfall rates for the storm event of May 2013, 16-18.

Dolomites, a mountain massive that peaks at over 3000 m a.s.l. In the northern part of the Bacchiglione catchment, the terrain

elevations raise from 250 to 1’000 m a.s.l. in less than 1 km, with slopes up to 70%.

A significant portion of the annual rainfall often concentrates into very short periods of time in the form of what often

turns out to be an extreme event with deep convection playinga central role (Barbi et al., 2012; Rysman et al., 2016). As a

consequence, severe flooding event have threatened agricultural and urban areas in the recent years (e.g. Viero et al., 2013;5

Scorzini and Frank, 2015).

A comparison of hourly rainfall rates measured at the four meteorological gauging stations of Valli del Pasubio, Monte

Summano, Malo, Montecchio Precalcino, and S.Agostino (Fig. 1) is reported in Fig. 2 for the storm event of 16-18 May

2013 (data provided by the Regional Agency for Flood Protection of the Veneto Region, ARPAV). The spatial and temporal

variability of the rainfall fields is apparent.10

Many meteorological model are unable to provide accurate and reliable quantitative precipitation estimates (QPE) forthe

upper Bcchiglione catchment, due to both insufficient spatial and temporal resolution, and to the actual complexity of this envi-

ronment. An example ot this inadequacy is given, for instance, by Fig. 13 in Mazzoleni et al. (2017). The discharge simulated

using forecasted input is very different from that obtainedusing recorded rainfall, showing significant time shift anderrors

between 25 and 50% at the flood peak (and up to 90% if considering synchronous data).15

From an hydraulic point of view, the upper Veneto plain is a highly populated and urbanized area, with extremely complex

drainage and irrigation networks. Within this plain, the Bacchiglione River and all its tributaries are provided with relatively

high levees (Viero et al., 2013), which prevent the exchangeof water from inside to outside the riverbed (and vice-versa) when

the inner water levels are relatively high. As a consequence, the minor channel networks are not always allowed to deliver their

drainage water towards the nearest tributary, i.e., the inflow points along the main river reaches change during a flood event20

depending on the instantaneous water level within the river. This occurrence change the network connectedness which, in turn,

leads to different mechanisms of hydrologic response in theoverall catchment.
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Just upstream of the City of Vicenza, a floodplain of about 1 km2 is flooded when the flow rate in the Bacchiglione exceeds

∼ 160 m3/s. Since about2 · 106 m3 of water can be temporarily stored in this area, a significantflood attenuation can be

produced, particularly in case of floods with a steep rising limb (which is often the case).

Clearly, such a system is highly non-linear. Nonetheless, significant parts of the Bacchiglione catchments are poorly moni-

tored, and the remaining parts are completely unmonitored.The Leogra subcatchment (blue shaded area in Fig. 1) is provided5

with a pressure-transducer for the measure of water level atTorrebelvicino (Fig. 1). A rating curve, derived from theoretical

considerations, is available for this cross-section. Its reliability is clearly low, since no instrumental measures of flow discharge

are available for this site. The Leogra-Timonchhio subcatchment (orange shaded area in Fig. 1) is monitored by a ultrasonic

stage sensor operated by ARPAV; Located in Ponte Marchese, just upstream of the confluence with the Orolo River, it is not

provided with any rating curve. Available flow rate measuresat Ponte Marchese refers only to low hydraulic regimes, and show10

great variability due to the operations of a hydroelectric power plant located just downstream of Ponte Marchese. The Orolo

River (green shaded area in Fig. 1), with a discharge capacity of more than one third of the Bacchiglione at Ponte degli Angeli,

is one of its major tributaries. The catchment of the the Orolo River leans against a ridge, which increases the spatial variability

of precipitation fields. Unfortunately, not only this area is completely uncovered by meteorological gauging stations, but also

no hydrometric gauging station are present along the reach of the Orolo River. Similarly to the Orolo, the Astichello catchment15

(red shaded area in Fig. 1) is unmonitored and, due to backwater effects, significant areas adjacent to the Astichello areflooded

when water levels in the Bacchiglione are relatively high. Hence, the discharge that effectively flows from the Astichello into

the Bacchiglione River may significantly reduced dependingon the water stage within the main course of the Bacchiglione

River.

Attention must be paid to the fact that the three major tributaries (Orolo, Timonchio, and Astichello) meet just upstream of20

the closing section of Ponte degli Angeli (Fig. 1), making itdifficult to estimate the actual contribution of each singletributary

to the total streamflow correctly. By looking at the tree-like structure of the drainage network (Rodríguez-Iturbe and Rinaldo,

2001) in an electrical analogy, the major tributaries of theBacchiglione are in fact “conductors in parallel”.

Finally, the lower part of the Bacchiglione basin, North of Vicenza, includes a vast groundwater resurgence zone, in which

it’s difficult to assess both the actual contribution of resurgence to the Bacchiglione streamflow (up to∼ 30 m3/s) and the25

time-variable behaviour of soil moisture.

Certainly, given the irregular topography of the catchments, the heterogeneity of the landscape, and the complexity ofthe

hydraulic network, it can be stated that the catchment of Bacchiglione is poorly monitored.

2.2 The semi-distributed model of the Bacchiglione catchment

In catchments like that of Bacchiglione, for all the reasonsreported in the previous section, the accurate prediction of flood30

hydrographs by performing continuous time simulations is unquestionably a hard task (Anquetin et al., 2010).

Sensibly, the semi-distributed model used in Mazzoleni et al. (2017) was calibrated by minimizing the root mean square error

between observed and simulated values of water discharge only at the Ponte degli Angeli, which is the only hydrometric station

provided with a reliable rating curve. The semi-distributed model, although explicitly representing the hydrological processes
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within the main subcatchments, has to be intended as a lumpedmodel from a practical standpoint, since the discharge in Ponte

degli Angeli is its only control point.

Therefore, no matter the accuracy of the model in forecasting flood hydrographs in Ponte degli Angeli, little can be said

about the accuracy of the same model in describing the internal states of the system, such as the streamflow along the upstream

tributaries. This limitation has to be ascribed to uncertainty in precipitation fields, to the paucity of (reliable) flowrate data5

upstream of Vicenza, and to inherent limitations of the model itself.

Indeed, it has to be remarked that the semi-distributed hydrologic model used by Mazzoleni et al. (2017) accounts for flood

propagation by means of a Muskingum–Cunge model that considers rectangular river cross-sections for the estimation of

hydraulic radios, wave celerities, and other hydraulic variables (Todini, 2007). Accordingly, the effects exerted bythe “Viale

Diaz” floodplain, which acts as a sort of in-line natural floodcontrol reservoir on flood propagation, can not be properly10

accounted for. This means that, if the flood hydrograph is correctly modelled at Ponte degli Angeli, it is not correctly modelled

upstream of the Viale Diaz floodplain (and vice-versa).

2.3 The use of CSD in a context of equifinality

In the work by Mazzoleni et al. (2017), the synthetic hourly crowdsourced data (CSD) of streamflow are the result of the

model itself. Indeed, synthetic CSD were calculated by forcing the hydrological model of the Bacchiglione catchment with15

measured precipitation recorded during the considered flood events (post-event simulation). As a matter of fact, thesedata are

representative of the actual model internal states of the best-fit scenario.

Importantly, the synthetic CSD used by Mazzoleni et al. (2017) in the Bacchiglione case study do not refer to calibration

points of the model. This aspect can be seen as a peculiarity of crowdsourced data, whose natural purpose is to enhance (rather

than replace) data from traditional sensors. Indeed, historical data recorded by traditional sensors are first used to calibrate a20

model; then, in real-time mode, the same sensors provide data both to force the model and to update the model states (e.g.

Ercolani and Castelli, 2017); moreover, the reliability ofdata from traditional sensors outperform that of CSD.

The Author claimed that the synthetic CSD they used are realistic. For the Bacchiglione case study, recalling the global

picture given in Sections 2.1 and 2.2, and that the semi-distributed model was calibrated only at closing section of Ponte degli

Angeli, this statement is at least questionable. Indeed, for synthetic streamflow CSD to be realistic, two specific requirements25

have to be met:i) a reliable rating curve must be available for the cross sections where hydrometric CSD are recorded, and

ii) the model has to be calibrated at these locations. Unfortunately, none of these requirements are met for the Bacchiglione

River. The first issue (i.e., lack of rating curves) was assessed inasmuch the Authors considered different degree of uncertainty

in streamflow CSD. In this way, they accounted for, e.g., measuring errors and inaccuracy in rating curves. However, nothing

was said (nor can be said) about the model performance at locations where CSD are collected, since these locations do not30

corresponds to calibration points. Here, the model predictions are likely biased but, contrarily to Mazzoleni et al. (2016), this

aspect was not accounted for in Mazzoleni et al. (2017).

What can occur if, due to over-parametrization, the model badly reproduces the actual states at the CSD locations? In this

case, the true crowdsourced data don’t match the internal model states needed to produce an accurate prediction of the flood
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hydrograph at the downstream section. Their assimilation into the model can even lead to worse results than no assimilation at

all or, at least, to fewer benefits than expected.

As warned by Dee (2005) and by Liu et al. (2012), great care should be taken in assimilating data if systematic biases or phase

errors in the data or model exist, since the optimality of thedata assimilation techniques is realized only if the observations and

the models are not biased in the mean sense.5

This observation is particularly important given that the results of the study by Mazzoleni et al. (2017) pointed out that the

model performance is more sensitive to the accuracies of CSDthan to the moments in time at which the streamflow CSD

become available. Be careful that here, given the characteristics of CSD used by the Authors, “accuracy of CSD” implies a

close similarity between the true crowdsourced data and theinternal states of the model.

This problem is of general interest, and not limited to the study by Mazzoleni et al. (2017). Actually, the complexity of10

catchments, the relatively paucity of data, and the over-parametrization of semi-distributed rainfall-runoff models are likely the

rule rather than the exception.

Therefore, the main aim of this comment is to warn about the subtle drawback hidden behind the (bad) practice of using

traditional and crowdsourced data, recorded at different locations, disjointly; the former to calibrate (semi-)distributed models

and to force them in real-time, the latter only to update the model states in operational forecasting. But the same problem, due15

to equifinality of (semi-)distributed models, could emergedue to a similar, incorrect use of only traditional data.

3 Summary

The approach proposed and investigated by Mazzoleni et al. (2017), based on the use of crowdsourced data (CSD) to improve

real-time flood forecasts, is in general valuable, and showsa promising way to improve the accuracy of hydrological predictions

using non-traditional information, which now active citizens and new technologies make available to hydrologists.20

However, it has to be remarked that the correct description of the physical rainfall-runoff processes has to face actual

limitations ascribed to the paucity of forcing data, to the complexity of real physical environments, and to the lacks inmodel

structure and parametrization. As a consequence, rainfall-runoff models such as that used in Mazzoleni et al. (2017) can provide

quite reliable predictions at locations where calibrationis performed (i.e., control points), and still provide unacceptably wrong

prediction of internal system states at the same time (e.g.,discharge in ungauged tributaries).25

In this context of equifinality (Beven, 2006), measured datathat do not refer to calibration points of (semi-)distributed models

are likely biased for data assimilation purpose (actually,at these locations, it is the model states that are biased rather than the

measured data!). The performance of model updating can be substantially lower than expected when assimilating biased data

(e.g., Dee, 2005; Liu et al., 2012). In other words, the assimilation of real (i.e., not synthetic) streamflow data referring to a

poorly parametrized subcatchments or tributary can lead, in principle, to even worse model prediction than no assimilation at30

all.

The problem can arise due to the disjoint use of traditional and crowdsourced data that refer to different locations, with the

former used to calibrate a (semi-)distributed model, and the latter used only in real-time model updating.
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A pragmatic, operative recommendation is the collection ofcrowdsourced data for a suitable test period, to verify the model

ability in describing the system states correctly at the locations in which CSD are collected, and possibly to update themodel

calibration using all the available data.

As a final remark, in order to take the maximum advantage in term of accurate and reliable real-time flood forecasts, both

modellers and environmental agencies should account in a comprehensively manner for the characteristics of the physical5

system, for the model structure and parametrization, for the design of the sensor network, and for data to be used both in

calibration and in operational mode.
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